Flink(5)——sink 介绍与实践

February 28, 2019
作者:星爷
出处:http://lxWei.github.io/posts/Flink(5)-Sink-%E4%BB%8B%E7%BB%8D%E4%B8%8E%E5%AE%9E%E8%B7%B5.html
声明:转载请注明作者及出处。

本文基于Apache Flink 1.7。

结合上一篇文章,Source 是 Flink 程序的输入,Sink 就是 Flink 程序处理完Source后数据的输出,比如将输出写到文件、sockets、外部系统、或者仅仅是显示(在大数据生态中,很多类似的,比如Flume里也是对应的Source/Channel/Sink),Flink 提供了多种数据输出方式,下面逐一介绍。

概念

对于write* 来说,主要用于测试程序,Flink 没有实现这些方法的检查点机制,也就没有 exactly-once 支持。所以,为了保证 exactly-once ,需要使用 flink-connector-filesystem,同时,自定义的addSink 也可以支持。

Connectors

connectors 用于给接入第三方数据提供接口,现在支持的connectors 包括:

另外,通过 Apache Bahir,可以支持Apache ActiveMQ、Apache Flume、Redis、Akka之类的Sink。

容错

为了保证端到端的 exactly-once,Sink 需要实现checkpoint 机制,下图(图片来自于官网)所示的Sink 实现了这点。exactly-once sinks.

实战

Elasticsearch Connector

下面我们将使用 Elasticsearch Connector 作为Sink 为例示范Sink的使用。Elasticsearch Connector 提供了at least once 语义支持,at lease once 支持需要用到Flink的checkpoint 机制。

要使用Elasticsearch Connector 需要根据Elasticsearch 版本添加依赖,如下图所示(图片来自官网)。es connector maven dependency

在这里,我们使用的Elasticsearch 版本是5.6.9,Scala 版本2.11。

添加如下依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch5_2.11</artifactId>
    <version>${flink.version}</version>
</dependency>

先看ElasticsearchSink 源码,我们需要定义 ElasticsearchSinkFunction 以及可选的 ActionRequestFailureHandler,ActionRequestFailureHandler 用来处理失败的请求。

public class ElasticsearchSink<T> extends ElasticsearchSinkBase<T, TransportClient> {
    private static final long serialVersionUID = 1L;

    public ElasticsearchSink(Map<String, String> userConfig, List<InetSocketAddress> transportAddresses, ElasticsearchSinkFunction<T> elasticsearchSinkFunction) {
        this(userConfig, transportAddresses, elasticsearchSinkFunction, new NoOpFailureHandler());
    }

    public ElasticsearchSink(Map<String, String> userConfig, List<InetSocketAddress> transportAddresses, ElasticsearchSinkFunction<T> elasticsearchSinkFunction, ActionRequestFailureHandler failureHandler) {
        super(new Elasticsearch5ApiCallBridge(transportAddresses), userConfig, elasticsearchSinkFunction, failureHandler);
    }
}

下面看完整的例子:

package learn.sourcesAndsinks

import java.net.{InetAddress, InetSocketAddress}
import java.util

import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala.{StreamExecutionEnvironment, _}
import org.apache.flink.streaming.connectors.elasticsearch.util.IgnoringFailureHandler
import org.apache.flink.streaming.connectors.elasticsearch5.ElasticsearchSink
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests

object BasicSinks {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

    // 定义stream  
    val stream: DataStream[String] = env.fromCollection(List("aaa", "bbb", "ccc"))

    // Elasticsearch 相关配置,ES 用 docker 起的,所以cluster.name 是默认的docker-cluster
    val config = new util.HashMap[String, String]()
    config.put("cluster.name", "docker-cluster")
    config.put("bulk.flush.max.actions", "1")
    val transportAddress = new util.ArrayList[InetSocketAddress]()
    transportAddress.add(new InetSocketAddress(InetAddress.getByName("127.0.0.1"), 9300))

    stream.addSink(new ElasticsearchSink(
      config,
      transportAddress,
      new ElasticsearchSinkFunction[String] {
        def createIndexRequest(element: String): IndexRequest = {
          val json = new util.HashMap[String, String]()
          json.put("data", element)

          return Requests.indexRequest()
            .index("my-index")
            .`type`("my-type")
            .source(json)
        }
        def process(element: String, ctx: RuntimeContext, indexer: RequestIndexer) = {
          indexer.add(createIndexRequest(element))
        }
      },
      // 忽略错误,示例用,不建议用于生产环境
      new IgnoringFailureHandler()
      ))

    env.execute()
  }
}

如下图所示,是上面程序的结果。es result

上面实现了一个基础的Elasticsearch Sink,为了保证数据完整性,需要添加一些重试策略,这些主要跟 Elasticsearch 相关。

ES flush 相关配置

bulk.flush.max.actions

bulk.flush.max.size.mb

bulk.flush.interval.ms

ES 错误重试配置

bulk.flush.backoff.enable

bulk.flush.backoff.type

bulk.flush.backoff.delay

bulk.flush.backoff.retries

如果在此基础上还需要处理Elasticsearch 的报错,可以自己实现ActionRequestFailureHandler 方法。

总结

本文主要以 Flink Elasticsearch Connector 为例讲了Flink 里的Sink,后面会对Source 和 Sink 进行源码解读。

看到这里,请扫描下方二维码关注我,Happy Friday !

QR